Skip to main content

Matthew - Capstone Blog Post 4



Finally, our CSI-480 (Advanced Topics: AI) course material is catching up to where we need to be. We are covering perceptrons and sigmoid neurons in the lectures, and we are also using TensorFlow to solve some very simple introductory problems (via tutorials). To supplement this I have been reading Neural Networks and Deep Learning by Michael Nielsen, a textbook available for free on the internet, which dives into neural networks right from the first chapter. Additionally, I have been finding 3Blue1Brown's multi-part video series about deep learning to be extremely helpful for visualizing some of the more advanced concepts. Even if I do not fully understand the calculus and linear algebra involved, at the very least I have a better idea of what goes on inside of neural networks. For example: I know what loss and gradient descent algorithms do, essentially, and I also understand how the latter helps find a local minimum for the former, but I do not necessarily feel confident in my understanding of the actual math behind them.

Overall, I feel like every step I take demystifies machine learning. Do my steps also deromanticize it? Perhaps a little. Somber piano music is playing on the radio, though, so take everything I say here with a grain of salt.

Before I let myself follow this train of thought any further, I really should think of our advisor, who I know would feel better if he saw some sign that we were working on our design document draft. And so, without any further ado, I hereby present our title page:

Note: Title pending review.

Should it be "the thrill of" or "the rush of"?
Anyway, never fear, for I have worked on more than just the title page!

Irrevocable proof that I installed a LaTeX compiler.
Fancy chart showing essentially the same content as the other screenshot.

And that is enough for one blog post. After all, every character I type here is a character I could be typing in the design document.

Comments

Popular posts from this blog

Matthew - Blog Post 9

After our last meeting, Professor Auerbach asked us to shift our focus towards building and training our model. So that's what we've been working on lately. The results so far have been interesting and problematic.

The first step was to define a minimal working model and a loading system to feed it our labelled data-set. I wrote a Sequence subclass, which is essentially a kind of generator designed for use with the fit_generator method. With fit_generator and a sequence, we're able to train and test the model with just a couple of one-liners:

model.fit_generator(sequence)
model.evaluate_generator(sequence)

The sequence subclass also has a few other tricks up its proverbial sleeve. For one, it reduces the dimensionality of the frame buffer data from 135×240×3 to 135×240×1 by converting it to gray-scale. This reduces the number of features from 97,200 to 32,400. For two, it does the same with the labels, combining and dropping 26 action types into just 9 atomic classes. This a…

Matthew - Blog Post 8

replaymanager.py is only 339 lines long but it feels at least three times that when I'm working on it. The module is definitely due for a refactor. For one, the term subdataset should be renamed to version_set and extracted into a class. version_set more accurately and describes what it is, and the class extraction would clean up the namespace in ReplayManager. There is probably some kind of class extraction possible for replays, so that their names, paths, file streams, and Twitter profiles can all be neatly encapsulated, thereby cleaning up the namespace even more. However, I do not want to worry about having two kinds of replays: the one used by ReplayManager and the one used by ReplayParser. Even though ReplayManager does not use ReplayParser, the prospect of making things more muddier deters me.

There's probably a right way to refactor this code, but, to put it simply, now is not the time. Speaking of time, I came up with a great way to get work done, even when I am sleep…

Matthew - Blog Post 10

At the time of my last blog post, we were managing quite a few problems. Our model was essentially vaporware, our training and testing was hindered by slow, blocking function calls from our loader, and our VRAM was continually getting exhausted during training sessions. But there is nothing to worry about. We have made major strides since then. Major strides.
Model improvements First, we have completely overhauled our model's architecture. We are now using a model composed of special layers that combine the functionality of a 2D convolutional neural network with that of an LSTM. Here is a summary of  our model as printed by Keras: