Skip to main content

Rei - Capstone Blog Post 2

This week, I wanted to look more deeply at current game AIs and try to get a deeper understanding of what Machine Learning AIs created for video games look like. I started by looking at one of the larger Computer Vision AIs, ViZDoom.

ViZDoom, according to the official website, is a "Doom-based AI research platform for reinforcement learning from raw visual information." ViZDoom sets out to accomplish a goal similar to ours, make an AI that can play Doom using only the screen buffer. The research group holds annual competitions, the competitions allows many developers to test their AI tweaks against others which results in some pretty competent AI players.

After looking into ViZDoom and learning about more Algorithms in AI, I decided to look at some of the really amazing Game AIs that are coming into public view. I found a video that explained AlphaGo. Which I found that I understood, at least understood better than I would have earlier. AlphaGo's math is pretty much a MiniMax algorithm and neural networks.

While I still don't completely understand everything explained in this video, I can tell that I am much closer than I was even last week. Now that I have at least implements some simple AIs(Basic Graph Searches), I understand how the data flow works a bit better.

My goals moving forward are to take a more in-depth look at simple neural networks. I would like to understand, at the very least, how data is stored and flows in a Neural Network problem. The other major goal I have for the upcoming weeks is to start listing the skills and resources that will be needed to complete this project.


Popular posts from this blog

Matthew - Capstone Blog Post 1

First I would like to discuss our goals and long-term plans. We want to create an artificial intelligence that learns how to play first-person shooters without access to any game state data other than what can be gained through the audio and visual buffers. In other words, the AI will only have access to the information that a human player would. If we are successful with these constraints, then I could see our work leading to AI that can play any game, or even AI-driven robots that can play games using mechanical hands and eyes to operate normal peripherals and interfaces.

We are currently in the research and planning phase of the project. This means that our job right now is to decide exactly what tools and technologies we will use and how they will interact with one another. By the end of the semester, which will arrive sometime this December, we will need to be ready for phase two, which is the development, training, and testing phase. Yes, that is all three at once. However, if …

Rei - Capstone Blog Post 1

Over the past couple of weeks, Matthew and I have been trying to narrow down our idea for capstone. We have settled on a "Modular" AI that can play First Person Shooters or other similar video games. However, we decided to put a slight twist on the idea of an AI playing games. Most of the AIs that are currently out have more information than they should possibly have at that time, like the location of players. We decided that our AI would only have information that would be accessible to a human player. We also noticed that many of the "PlayerAIs" out there are reactionary, not planning. While reacting is a key part to many of these games, so is strategy. We want to create an AI that thinks, at least a little bit, about that actions it is making or should make.

Since narrowing down our topic we have split off and started looking at different existing technologies and research that could help us understand and create this project. I decided to look at some computer…

Matthew - Capstone Blog Post 4

Finally, our CSI-480 (Advanced Topics: AI) course material is catching up to where we need to be. We are covering perceptrons and sigmoid neurons in the lectures, and we are also using TensorFlow to solve some very simple introductory problems (via tutorials). To supplement this I have been reading Neural Networks and Deep Learning by Michael Nielsen, a textbook available for free on the internet, which dives into neural networks right from the first chapter. Additionally, I have been finding 3Blue1Brown's multi-part video series about deep learning to be extremely helpful for visualizing some of the more advanced concepts. Even if I do not fully understand the calculus and linear algebra involved, at the very least I have a better idea of what goes on inside of neural networks. For example: I know what loss and gradient descentalgorithmsdo, essentially, and I also understand how the latter helps find a local minimum for the former, but I do not necessarily feel confident in my …