Skip to main content

Rei - Blog Post 10

So,  I missed blog post 9. This is me acknowledging that for consistency.

Anyway, the past couple of weeks have been incredibly productive for ContentsMayBeHot. Matthew has finished collecting all the replay data, we have refactored our project to reduce complexity, we have improved the runtime of our code, and finally we have started seriously training our model.

The Changes


Matthew implemented multi-threading for the model loading. Which reduced our load time between files from about 3-5 Seconds to 1 Second or less. Which allows us to fully train a model in much less time!

While Matthew did this I reduced the code duplication in our project. This way, if we needed to change how we loaded our training data, we didn't have to change it in multiple places. This just allows us to make hot-fixes much more efficiently.

We also started working on some unittests for our project using pytest. These tests were written because of a requirement for another class, but we thought it would be useful to mention these tests.




Next Steps


Now that we are in the extreme-final steps of our project, my primary role has been actually training the data. The results of which are already on our github.

Matthew and I will be moving to focusing on our paper and our poster. While we will be helping one another, Matthew will be taking the lead for the paper while I will be taking the lead for the poster. I personally hope to get the poster done within the next couple of days.

Comments

Popular posts from this blog

Matthew - Blog Post 7

Since January, we've been working hard to not only finish writing the Replay Parser and Frame Collector but also totally synchronize them. I'm pleased to report our success. This is an amazing milestone for us because it means that we've surmounted one of our most troubling obstacles. I have also made sure to keep our documentation up to date. So, if you like, you can follow along with this blog post by replicating its results. The Frame Collector uses timed input sequences to start each replay associated with the currently running game version. Then, after waiting a set amount of time for playback to begin, it starts grabbing 1/4-scale frames at a rate of 10 frames per second. The Frame Collector takes these down-scaled frames, which are NumPy arrays, and rapidly pickles and dumps them into the file system. Here's a screenshot of the Frame Collector in action: If you look at the image above, you'll see that each pickle (the .np files) ...

Rei - Blog Post 8

This most recent work period involved a lot of refactoring and adding some new key functionality. Matthew asked me to create a simplified Action Type in addition to the one that was all in place, basically just the same actions without PRESSED and RELEASED. Since we still wanted the original structure to be there, all I had to do was cast the "complex" actions to "simple actions. Matthew then asked if I could convert that SimpleAction type into a matrix, so we could have a clearly defined Y. This was also incredibly easy. I am actually quite happy with how it works as well. All you have to do to create an array for the action is two steps! matrix = numpy.zeros(26) if action is not SimpleAction.INVALID:     matrix[action] = 1; The 26 is the number of different Simple Actions we have. Then, to make it so we can run the parser separately from the Agent, I made it the replay can output numpy files for each character where each row in the file contains the frame of...